If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+12x-1728=0
a = 1; b = 12; c = -1728;
Δ = b2-4ac
Δ = 122-4·1·(-1728)
Δ = 7056
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{7056}=84$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-84}{2*1}=\frac{-96}{2} =-48 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+84}{2*1}=\frac{72}{2} =36 $
| 14000=1,44x-x | | 18x-13=13x-23 | | 4/2x+x/4=5 | | 4x/2+x/4=5 | | -2x-8=3x+7 | | 9-(5-7m)=13+4m | | 13=-7x+55 | | (10a+2)=(2a+62) | | (10a+2)=2a+62 | | 2x+3+2x=19 | | 4x-3x(x+2)=5(4-x) | | -4x=-1/4x | | 7z-5=57-3 | | 2n-10=3n-13 | | T-6t-23=0 | | 10a+2=2a+62 | | 4y+5÷2=y+9 | | 7y-9=2y+4991 | | 9(x+2)=9x−2 | | 10k+4=4k+34 | | 34+-5x=64 | | 4x+9=-3(x+4) | | 6y+3=4y+21 | | 10t-9=4t+33 | | 6(2x+1)-3(x-2)=9x+20 | | x-2(x+1)=-3 | | 9g-2=2g+33 | | 10x+2=4x+32 | | 3(b+5)4=3b−128 | | 28x=7×(x+12) | | 8f-9=2f+27 | | -3.68x=-20.52x-1.71 |